A range correction for ICESat and its potential impact on ice-sheet mass balance studies
نویسندگان
چکیده
We report on a previously undocumented range error in NASA’s Ice, Cloud and land Elevation Satellite (ICESat) that degrades elevation precision and introduces a small but significant elevation trend over the ICESat mission period. This range error (the Gaussian-Centroid or “G-C” offset) varies on a shot-to-shot basis and exhibits increasing scatter when laser transmit energies fall below 20 mJ. Although the G-C offset is uncorrelated over periods ≤ 1 day, it evolves over the life of each of ICESat’s three lasers in a series of ramps and jumps that give rise to spurious elevation trends of −0.92 to −1.90 cm yr−1, depending on the time period considered. Using ICESat data over the Ross and Filchner–Ronne ice shelves we show that (1) the G-C offset introduces significant biases in ice-shelf mass balance estimates, and (2) the mass balance bias can vary between regions because of different temporal samplings of ICESat. We can reproduce the effect of the G-C offset over these two ice shelves by fitting trends to sample-weighted mean G-C offsets for each campaign, suggesting that it may not be necessary to fully repeat earlier ICESat studies to determine the impact of the G-C offset on ice-sheet mass balance estimates.
منابع مشابه
Antarctic Ice Shelf Tide Modeling Using PALSAR Interferometry
The knowledge of ocean tides underneath permanently or seasonally sea ice covered ocean and ice shelves over Antarctica, is largely unknown. Significant amount of West Antarctic ice sheet melt is through the mechanism of basal melting and due to turbulent tidal mixing. Knowledge of the ice shelf grounding lines and their extent, are critical to accurately quantify ice sheet mass balance, and oc...
متن کاملDynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet
Mass-balance analysis of the Greenland ice sheet based on surface elevation changes observed by the European Remote-sensing Satellite (ERS) (1992–2002) and Ice, Cloud and land Elevation Satellite (ICESat) (2003–07) indicates that the strongly increased mass loss at lower elevations (<2000m) of the ice sheet, as observed during 2003–07, appears to induce interior ice thinning at higher elevation...
متن کاملRegistering imagery to ICESat data for measuring elevation changes on Byrd Glacier, Antarctica
[1] We present a new approach to derive control information from ICESat data that enables rigorous registration of aerial and satellite imagery. The technique, based on matching terrain features identified from ICESat measurements and aerial imagery, opens the door to transform results of previous studies to a global reference frame. We demonstrate the proposed methodology with historical aeria...
متن کاملEstimation of Mass Balance of the Grosser Aletschgletscher, Swiss Alps, from ICESat Laser Altimetry Data and Digital Elevation Models
Traditional glaciological mass balance measurements of mountain glaciers are a demanding and cost intensive task. In this study, we combine data from the Ice Cloud and Elevation Satellite (ICESat) acquired between 2003 and 2009 with air and space borne Digital Elevation Models (DEMs) in order to derive surface elevation changes of the Grosser Aletschgletscher in the Swiss Alps. Three different ...
متن کاملEstimation of present-day glacial isostatic adjustment, ice mass change and elastic vertical crustal deformation over the Antarctic ice sheet
This study explores an iterative method for simultaneously estimating the present-day glacial isostatic adjustment (GIA), ice mass change and elastic vertical crustal deformation of the Antarctic ice sheet (AIS) for the period October 2003–October 2009. The estimations are derived by combining mass measurements of the GRACE mission and surface height observations of the ICESat mission under the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014